

©2016 Check Point Software Technologies Ltd. All rights reserved.

1

CHECK POINT
LOOKING INTO TESLACRYPT
V3.0.1
BY STANISLAV SKURATOVICH, MALWARE REVERSE ENGINEER
MALWARE REVERSE ENGINEERING TEAM

OVERVIEW

TeslaCrypt is a very popular ransomware that first appeared in the wild at the beginning of 2015. Since its

first appearance, TeslaCrypt has undergone several version changes, with each version introducing new

abilities, fixing old bugs, adding new evasion techniques and using new technologies.

Several months ago, a new version of TeslaCrypt, v3.0.1 was released. It again introduces several notable

changes, perhaps the most important of which is the ability to encrypt files while offline – i.e., C&C

communication is not mandatory to initiate the encryption process. The new version also hides its activities

by executing on very low priority, as well as closing applications that may lead to detection.

To provide a better understanding of the newly implemented mechanisms that support these new features,

our research teams decided to closely examine this new version. This report details the inner workings of

TelsaCrypt v3.0.1, as well as provides techniques that can be used to detect and block its malicious

operations.

MALWARE FUNCTIONALITY AND PAYLOAD

The ransomware performs some initialization steps before starting the routines responsible for key

generation and data decryption. First of all, the malware checks the SECURITY_MANDATORY level by calling

the GetSidSubAuthority function and removes the :ZoneIdentifier stream from a binary file. If the

integrity level is SECURITY_MANDATORY_LOW_RID, the ransomware uses the ShellExecuteEx function with

a runas action for this command:

{WINDOWS_DIRECTORY}\system32\cmd.exe /c "" ${PATH_TO_EXE}

©2016 Check Point Software Technologies Ltd. All rights reserved.

2

If the SECURITY_MANDATORY level is different, the ransomware checks if its path to the execution file contains

the windir environment variable or CSIDL_MYDOCUMENTS (which depends on the user belonging to the

Administrator group). If the path contains these specific directories, the ransomware continues execution.
Otherwise, it copies the image file to one of the directories, depending on the user account rights. The name
of the file is generated randomly and contains 0x0C lower ASCII symbols. It then executes the newly copied
file and removes the original file with this command:

{WINDOWS_DIRECTORY}\system32\cmd.exe /c DEL ${PATH_TO_EXE}

The ransomware tries to stay persistent on the infected system by adding the following entry to the registry

key:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
 ${STRING_0x0C_RAND_LOWER}="C:\WINDOWS\system32\cmd.exe /c start ""
"${PATH_TO_EXE}""

In order to allow higher level applications to access mapped network drives, the ransomware sets the

following registry key value to 1:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Syste
m\EnableLinkedConnections

The ransomware reads the image checksum by accessing the field IMAGE_NT_HEADERS.Optional-

Header.CheckSum. The strange thing is that it saves only the 2 middle bytes of that checksum in the process

space. To run only one instance of the executable, the ransomware creates a mutex with the following name:

8765-123rvr4

At this point, the ransomware starts checking if it was already executed on the infected computer. First of all,

it queries the following registry keys for the presence of the ID subkey:

HKEY_USERS\S-1-5-18\Software\zzzsys
HKEY_CURRENT_USER\Software\zzzsys

If such a subkey is present, the ransomware reads the value stored under it. This subkey specifies the

InstanceID for the compromised machine. If the subkey is absent, the ransomware generates 0x08 random

bytes (InstanceID) and stores them under the HKEY_CURRENT_USER\Software\zzzsys\ID registry key.

The ID is converted to the hexlified string representation using the following format: %X%X%X%X%X%X%X%X.

After generating or loading the ID, the ransomware checks the following registry keys for the presence of the

data subkey:

HKEY_USERS\S-1-5-18\Software\zzzsys\hexlified_ID

HKEY_CURRENT_USER\Software\zzzsys\hexlified_ID

©2016 Check Point Software Technologies Ltd. All rights reserved.

3

If the data subkey is present and the value length is equal to 0x100 bytes, the ransomware assumes that all

global encryption keys are generated and initializes the following buffers:

struct reg_data {
 char EC_GLOB_BTN_ADDR[0x30]; // Bitcoin Address
 char G_EC_REC_PUB__AES_EC_GLOB_PRIV[0x80]; // Global recovery data
 char EC_GLOB_PUB_point2oct[0x48]; // Global public key converted to octet
string (see: OpenSSL EC_POINT_point2oct())
 uint64_t EncryptionKeysGenerationTime; // Time when encryption keys were
generated
};

If the data is valid, the ransomware generates only session ECDH keys (see Session ECDH key

generation) that will be used for data encryption. If the data is absent or invalid, the ransomware performs

the whole process of encryption key generation (see Encryption key generation). After the generation

process, keys are saved to the following registry key using the same structure presented above:

HKEY_CURRENT_USER\Software\zzzsys\hexlified_ID\data

At this point, all initialization steps are performed, so the ransomware starts the following threads:

 Process killing thread (see Process killing thread).

 Remove Shadow Copy thread (see Remove shadow copy thread) if the

OSVERSIONINFO.dwBuildNumber does not equal the 0xA28, which refers to the Windows XP build

number.

Before starting disk encryption, the ransomware decrypts some additional information as file extensions that

are normally encrypted: C&C server addresses and messages about the ransom. The decryption process

starts with some preprocessing of encrypted internal data. After that, the preprocessed data is decrypted

using a RC2-CBC-PKCS5 stream cipher with the key kasdfgh283 and an IV specific for each decrypted

string. See Appendix G for the list of decrypted file extensions. As the ransomware uses a specific key for

data decryption, the technique described in Appendix B can be used to detect the presence of TeslaCrypt

and prevent disk encryption (at least for the described version).

The ransomware generates a random string with a length of 0x09 bytes and uses it as part of the recovery

file name:

CSIDL_MYDOCUMENTS\recover_file_${rand_name}.txt

©2016 Check Point Software Technologies Ltd. All rights reserved.

4

The following data is saved to this file (each field is separated with a newline symbol \n):

Format Data Representation

%s EC_GLOB_BTN_ADDR Plaintext
%s G_EC_REC_PUB__AES_EC_GLOB_PRIV Hexlified data
%s hexlified_id Plaintext
%d Image partial checksum Number

Another thing the malware does is prepare 3 versions of the ransom message: as a web page (see

Appendix E), as an image (see Appendix D), and as a plaintext message (see Appendix F). After all these

actions, the ransomware starts the following threads:

 Internet communication thread that is responsible for sending the Sub=Ping command to the C&C

server (see Network and Communication).

 Encryption thread, setting its priority to IDLE to avoid drastic increase of CPU usage.

The ransomware performs disk encryption operations using an AES-CBC-128 algorithm with the previously

generated random keys. The file header that stores encryption-related information and encrypted data are

stored in the original file. After these operations, the ransomware appends an .mp3 extension to the original

file name. Recovery files that notify the user about the encryption are stored in the directories. For more

information, see Encryption thread.

The ransomware waits until the encryption thread finishes the disk encryption. After the encryption process is

finished, the ransomware creates three files on the desktop and executes the ShellExecute function with

the action open to show these files to the user:

Path Content

${DESKTOP}\RECOVERY.TXT Ransom message in plaintext
${DESKTOP}\RECOVERY.HTM Ransom message as web-page
${DESKTOP}\RECOVERY.png Ransom message as image

At this point, the encryption process is finished, so the ransomware starts the following threads:

 Internet communication thread that is responsible for sending the Sub=Crypted command to the

C&C server (see Network and Communication).

 Remove Shadow Copy thread for the second time (see Remove shadow copy thread) if the

OSVERSIONINFO.dwBuildNumber does not equal the 0xA28, which refers to Windows XP build

number.

At the end, the ransomware performs cleaning operations by removing the executable file from th e disk using

this command:

{WINDOWS_DIRECTORY}\system32\cmd.exe /c DEL ${PATH_TO_EXE}

©2016 Check Point Software Technologies Ltd. All rights reserved.

5

RANDOM FUNCTION

To generate random data, the ransomware uses its own randomization function. When the randomization

function is called, the ransomware checks if initialization buffers were previously generated. If not, the

ransomware starts the process of buffer initialization. To randomize data in these buffers, it uses the

following information:

 Statistical information about the LanmanWorkstation workstation, received by calling the

NetGetStatistics function.

 Statistical information about the LanmanServer server, received by calling the NetGetStatistics

function.

 Random buffer of size 0x40, generated by calling the CryptGenRandom function with a

PROV_RSA_FULL provider.

 Random buffer of size 0x40, generated by calling the CryptGenRandom function with a

PROV_INTEL_SEC provider, if such a provider is present in the system.

 Heap chunk information of the ransomware process.

 Process, module, and thread information.

 QueryPerformanceCounter function results.

 GlobalMemoryStatus function results.

 Current process' PID.

After the initialization buffers are filled, the ransomware uses them to generate random data. At the same

time, it changes the buffers’ initial state to avoid generating the same data. It should be emphasized that a

SHA1 algorithm is used in this function.

ENCRYPTION KEY GENERATION

The ransomware uses asymmetric cryptography during the key generation process. Asymmetric

cryptography protocol is called Elliptic Curve Diffie-Hellman, which is a variety of Diffie-Hellman that uses

elliptic curve cryptography. The standardized curve secp256k1 is used during the key generation process.

The following parameters for this elliptic curve are used

(see OpenSSL source code):

static const struct {

 EC_CURVE_DATA h;

 unsigned char data[0 + 32 * 6];

} _EC_SECG_PRIME_256K1 = {

 {

 NID_X9_62_prime_field, 0, 32, 1

 },

 {

 /* p */

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F,

©2016 Check Point Software Technologies Ltd. All rights reserved.

6

 /* a */

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 /* b */

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07,

 /* x */

 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC, 0x55, 0xA0, 0x62, 0x95,

 0xCE, 0x87, 0x0B, 0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9,

 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, 0x98,

 /* y */

 0x48, 0x3a, 0xda, 0x77, 0x26, 0xa3, 0xc4, 0x65, 0x5d, 0xa4, 0xfb, 0xfc,

 0x0e, 0x11, 0x08, 0xa8, 0xfd, 0x17, 0xb4, 0x48, 0xa6, 0x85, 0x54, 0x19,

 0x9c, 0x47, 0xd0, 0x8f, 0xfb, 0x10, 0xd4, 0xb8,

 /* order */

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,

 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41

 }

};

The ransomware generates three sets of ECDH keys:

 Global ECDH keys that are generated only once, when the ransomware installs itself in the system

(further EC_GLOB_xxx).

 ECDH keys that are used to encrypt global ECDH keys (further EC_REC_xxx).

 Session ECDH keys that are generated each time, when the ransomware is restarted (further

EC_SESS_xxx). These keys are used to encrypt the user's data.

The ransomware uses AES-CBC-128 as a symmetric algorithm to encrypt the user's data.

The full process of key generation is described in the sections below. There are EC_GENERATOR states for the

secp256k1 object.

GLOBAL ECDH KEY GENERATION (EC_GLOB)

The ransomware starts with the global ECDH key generation. This process is described step by step:

1. Generate a random number of 0x20 byte size. This number is the global private key EC_GLOB_PRIV.

It is deleted later to avoid data decryption without ransom payment.

2. Calculate the SHA256 hashsum of EC_GLOB_PRIV. This value is called EC_GLOB_SHA_PRIV.

3. Calculate the global public key EC_GLOB_PUB by performing the following operations:

EC_GLOB_PUB = EC_GENERATOR * EC_GLOB_SHA_PRIV

©2016 Check Point Software Technologies Ltd. All rights reserved.

7

4. Calculate the global public BitCoin key by performing the following operations:

EC_GLOB_BTN_PUB = EC_GENERATOR * EC_GLOB_PRIV

After global keys are generated, the ransomware moves to the process of global recovery key generation.

The ransomware calculates the BitCoin address EC_GLOB_BTN_ADDR using EC_GLOB_BTN_PUB as a public

key.

RECOVERY ECDH KEY GENERATION (EC_REC)

The ransomware performs the following steps to generate the global recovery key:

1. Import the server public key SRV_PUB by setting hardcoded affine coordinates from the binary.

X=0x95667250209D992A05553BDF8CB0E1320B04B2E0FF9177FE88C32CF125FEA249
Y=0x198DCC6F24BCD3D38BE3A62A8F41F92E9D1A4690B54A2D8E4928A933312C643B

2. Generate a pair of private/public keys EC_REC_PRIV and

EC_REC_PUB = EC_GENERATOR * EC_REC_PRIV

EC_REC_PRIV is deleted later to avoid data decryption without ransom payment.

3. Generate a global shared secret key using the SHA256 hashsum of:

GLOB_SHARED = EC_REC_PRIV * SRV_PUB

This value is called GLOB_SHA_SHARED.

4. Encrypt EC_GLOB_PRIV using an AES-CBC-128 encryption algorithm. Concatenate EC_REC_PUB and

encrypted EC_GLOB_PRIV to receive global recovery data G_EC_REC_PUB__AES_EC_GLOB_PRIV. The

code is presented below:

def gen_global_rec_data(EC_GLOB_PRIV, GLOB_SHA_SHARED, EC_REC_PUB):
 IV = '\x00' * 16
 ciphertext = aes_encrypt(GLOB_SHA_SHARED, IV, EC_GLOB_PRIV, False)
 return EC_REC_PUB + ciphertext

SESSION ECDH KEY GENERATION (EC_SESS)

The ransomware performs these steps to generate a session AES-CBC-128 encryption key (used to encrypt

the user's data):

1. Generate a random buffer of 0x20 byte size. The generated buffer is used as a key for the AES-CBC-

128 algorithm (further SESS_AES_KEY).

©2016 Check Point Software Technologies Ltd. All rights reserved.

8

2. Generate a pair of private/public keys EC_SESS_PRIV and

EC_SESS_PUB = EC_GENERATOR * EC_SESS_PRIV

EC_SESS_PRIV is deleted later to avoid data decryption without ransom payment.

3. Generate a session shared secret key using the SHA256 hashsum of:

SESS_SHARED = EC_SESS_PRIV * EC_GLOB_PUB

This value is called SESS_SHA_SHARED.

4. Encrypt SESS_AES_KEY using an AES-CBC-128 encryption algorithm. Concatenate EC_SESS_PUB and

encrypted SESS_AES_KEY to receive the shared recovery data G_EC_SESS_PUB__AES_SESS_AES_KEY.

The code is presented below:

def gen_shared_rec_data(SESS_AES_KEY, SESS_SHA_SHARED, EC_SESS_PUB):
 IV = '\x00' * 16
 ciphertext = aes_encrypt(SESS_SHA_SHARED, IV, SESS_AES_KEY, False)
 return EC_SESS_PUB + ciphertext

©2016 Check Point Software Technologies Ltd. All rights reserved.

9

Random EC_GLOB_PRIV

EC_GLOB_SHA_PRIV = SHA256(EC_GLOB_PRIV)

EC_GLOB_PUB = EC_GENERATOR * EC_GLOB_SHA_PRIV

Import SRV_PUB

Random EC_REC_PRIV

EC_REC_PUB = EC_GENERATOR * EC_REC_PRIV

GLOB_SHA_SHARED = SHA256(EC_REC_PRIV * SRV_PUB)

G_EC_REC_PUB__AES_EC_GLOB_PRIV = EC_REC_PUB |
AES(GLOB_SHA_SHARED, EC_GLOB_PRIV)

Random SESS_AES_KEY

Random EC_SESS_PRIV

EC_SESS_PUB = EC_GENERATOR * EC_SESS_PRIV

SESS_SHA_SHARED = SHA256(EC_SESS_PRIV *

EC_GLOB_PUB)

G_EC_SESS_PUB__AES_SESS_AES_KEY = EC_SESS_PUB |
AES(SESS_SHA_SHARED, SESS_AES_KEY)

Encryption key generation

Encryption key usage

AES(SESS_AES_KEY, FILE_CONTENT)

©2016 Check Point Software Technologies Ltd. All rights reserved.

10

PROCESS KILLING THREAD

This thread is responsible for enumerating currently running processes in the operating system by using

function EnumProcesses. The ransomware kills a process if one of the following substrings is found in the

process' name:

Substrings Blacklisted processes
Askmg Task Manager
Rocex Process Explorer
Egedi Registry Editor
sconfi System Configurator
Cmd Command Line

REMOVE SHADOW COPY THREAD

This thread is responsible for removing shadow copies on the affected system to avoid restoring encrypted

files from backup. The following steps are performed:

1. Disable file system redirection for the current thread, if the Wow64DisableWow64FsRedirection

function is available.

2. Execute the ShellExecuteEx function with one the following commands:

wmic.exe shadowcopy delete /noninteractive (verb=runas)
wmic.exe shadowcopy delete /noninteractive (verb=open)

The command depends on membership in the Local Administrator Group.

3. Revert file system redirection for the current thread, if the Wow64RevertWow64FsRedirection

function is available.

ENCRYPTION THREAD

The ransomware generates a pseudo-random string (further REC_FILENAME) of 5 byte length using the rand

function and the value returned by GetTickCount as a seed.

The ransomware gets all the drives in the system by calling the GetLogicalDriveStrings function. Drives

A:\ and B:\ are skipped. Drives that are not of one of the following types are skipped as well:

DRIVE_FIXED
DRIVE_REMOTE
DRIVE_REMOVABLE

At the same time, all network resources are enumerated recursively using the WNet family functions. The

ransomware looks for resources with the type RESOURCETYPE_DISK. If such a resource is found, its remote

name is added to the array of paths to encrypt.

©2016 Check Point Software Technologies Ltd. All rights reserved.

11

All drives and network disk resources are encrypted according to the rules described below.

The ransomware enumerates the directories recursively and performs the following actions inside each:

1. Encrypt files in the directory (see Encrypt files).

2. Check if the directory name belongs to the list presented below. If the name equals one of these, this

directory is omitted:

CSIDL_COMMON_DESKTOPDIRECTORY
CSIDL_DESKTOPDIRECTORY
CSIDL_CDBURN_AREA
.*Desktop.*
.*${MODULE_NAME}.*

The following files are created in the affected directories:

File Name File Content

"%s\\%s+%s.png" % (${CWD}, ""_RECoVERY_",
${REC_FILENAME})

Image with ransom payment
information

"%s\\%s+%s.html" % (${CWD}, ""_RECoVERY_",
${REC_FILENAME})

Web browser page with ransom payment
information

"%s\\%s+%s.txt" % (${CWD}, ""_RECoVERY_",
${REC_FILENAME})

Plaintext with ransom payment
information

It should be emphasized that the following directories are skipped when performing the described operations:

.

..

CSIDL_COMMON_APPDATA

CSIDL_PROGRAM_FILES

CSIDL_WINDOWS

If the directory passes all the checks, the ransomware starts the process of file encryption. To check if a file

is already encrypted or belongs to the infection meta-information file, the ransomware checks if the filename

contains one of the following substrings case-insensitively (such a file is skipped):

.mp3

recove

The ransomware encrypts only files with specific extensions (see Appendix G). The encryption routine is

fully described in the next subsection.

©2016 Check Point Software Technologies Ltd. All rights reserved.

12

ENCRYPT FILES

The ransomware does not encrypt a file if its size is less than 0x20 bytes or larger than 0x13800 000 bytes. If

the 24th byte of a file equals the 0x04 value, the file is skipped as well.

The ransomware encrypts the file content with an AES-CBC-128 encryption algorithm. It uses the previously

generated SESS_AES_KEY as a key and the hardcoded buffer as an IV. The source code for file encryption

routine is presented below:

def read_file(fname):
 with open(fname, 'rb') as f:
 return f.read()

def encrypt_file(fname, SESS_AES_KEY):
 IV = '\x12\x65\x1C\x01\x31\x8D\x69\x26\x17\x81\x97\xFF\x0E\xAD\xFA\xAA'
 return aes_encrypt(SESS_AES_KEY, IV, read_file(fname))

The ransomware saves specific meta information to the encrypted file, as well as ciphertext. The structure of

an encrypted file is presented below:

struct enc_file {
 char zero_0[8]; // null bytes
 char inst_id[8]; // instance ID
 char zero_1[8]; // null bytes
 char G_EC_REC_PUB__AES_EC_GLOB_PRIV[0x80]; // Global recovery data
 char EC_GLOB_PUB_point2oct[0x44]; // Global public key converted to octet
string (see: OpenSSL EC_POINT_point2oct())
 char G_EC_SESS_PUB__AES_SESS_AES_KEY[0x80]; // Shared recovery data
 char aes_iv_file_enc[0x10]; // AES IV used during files encryption
 uint32_t orig_file_size; // original file size
 char enc_data[0]; // ciphertext
};

©2016 Check Point Software Technologies Ltd. All rights reserved.

13

The example of encrypted file data is presented below:

The ransomware appends an .mp3 extension to the encrypted file. If a file with this name already exists, the

ransomware removes it, sleeps for 400 milliseconds, and tries to save the encrypted data to a file once

again.

NETWORK AND COMMUNICATION

The ransomware communicates with the C&C server to send information about the encryption keys, infected

machine and the malware itself. The first communication attempt is performed before the encryption process;

the second one is performed after all data on the compromised system is encrypted.

If the ransomware fails to establish communication with one of the C&C servers, it ends the thread without

sending any information to the server. It should be emphasized that encryption is performed even with failed

communication.

The ransomware sends packets to the C&C server using HTTP POST requests on the default TCP/80 port,

with the following header values:

Accept: */*
Content-Type: application/x-www-form-urlencoded
UserAgent: Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; Touch; rv:11.0)
like Gecko

©2016 Check Point Software Technologies Ltd. All rights reserved.

14

CLIENT REQUEST

The HTTP POST request contains the following data:

Sub=%s&dh=%s&addr=%s&size=%lld&version=%s&OS=%ld&ID=%d&inst_id=%X%X%X%X%X%X%X%X

Each parameter is described below.

Field Name Description

Sub Command type

dh Hexlified ECDH Global recovery key G_EC_REC_PUB__AES_EC_GLOB_PRIV

addr Machine-specific bitcoin address, where ransom should be paid

size Size of encrypted files in total (Mb)

version Malware version (3.0.1 in researched sample)

OS Operating system build number

ID Part of malware image file checksum

inst_id Machine-specific unique ID

When sending the initial packet to the C&C server, the ransomware uses the Sub=Ping command type.

When sending the packet after whole disk encryption, the ransomware uses the Sub=Crypted command

type.

The ransomware encrypts and encodes the data when it communicates with the C&C. It calculates the

SHA256 checksum of the decrypted hardcoded string 0324532423723948572379453249857. The received

hashsum is used as a key for the AES-CBC-128 encryption algorithm. The full code is presented below:

from binascii import hexlify
from hashlib import sha256

def inet_encrypt(data):
 data += '\x00'
 IV = '\xFF\xFF\xAA\xAA\x00\x00\xBE\xEF\xDE\xAD\x00\x00\xBE\xFF\xFF\xFF'
 key = sha256('0324532423723948572379453249857')

 return aes_encrypt(key, IV, data)

def inet_http_prepare(data):
 return 'data=%s' % hexlify(inet_encrypt(data))

The ransomware uses one of the hardcoded C&C servers (see Indicators of Compromise) to notify about

the current state.

It should be emphasized that there is a possibility to decrypt the packet sent to the C&C server and

determine if it belongs to the TeslaCrypt process, thus breaking its execution (see Appendix C).

©2016 Check Point Software Technologies Ltd. All rights reserved.

15

SERVER RESPONSE

The ransomware assumes that the C&C handled the request correctly if the response contains the INSERTED

string.

DECRYPTION PROCESS

This section presents the details of the decryption process that may be performed after ransom payment:

1. The infected computer has the following meta information about encryption process:

G_EC_SESS_PUB__AES_SESS_AES_KEY, EC_GLOB_PUB, G_EC_REC_PUB__AES_EC_GLOB_PRIV.

2. As G_EC_REC_PUB__AES_EC_GLOB_PRIV was previously transferred to the C&C server, the decrypter

can extract the EC_REC_PUB key and calculate:

GLOB_SHARED = SRV_PRIV * EC_REC_PUB

It then calculates the SHA256 hashsum of the key GLOB_SHA_SHARED.

3. It can decrypt EC_GLOB_PRIV using an AES-CBC-128 algorithm with GLOB_SHA_SHARED as a key, and

then calculate the SHA256 hashsum of EC_GLOB_SHA_PRIV. It sends this key with a local decrypter

to the infected machine.

4. The local decrypter on the infected machine enumerates all encrypted files and uses

EC_GLOB_SHA_PRIV to restore the session shared key:

SESS_SHARED = EC_SESS_PUB * EC_GLOB_SHA_PRIV

It then calculates the SHA256 hashsum of SESS_SHA_SHARED. EC_SESS_PUB is taken from session

recovery data G_EC_SESS_PUB__AES_SESS_AES_KEY that is saved in the encrypted file header.

5. The local decrypter on the infected machine decrypts SESS_AES_KEY key using an AES-CBC-128

algorithm with the key SESS_SHA_SHARED.

6. As a last step, the decrypter restores the files using an AES-CBC-128 algorithm with the

SESS_AES_KEY key and the IV

\x12\x65\x1C\x01\x31\x8D\x69\x26\x17\x81\x97\xFF\x0E\xAD\xFA\xAA that is stored in the

encrypted file header.

If the infected machine was not able to communicate with the C&C server, the

G_EC_REC_PUB__AES_EC_GLOB_PRIV data was not sent. To decrypt data without sending the SRV_PRIV

key to the infected machine, the cybercriminals may ask the user to send one of the encrypted files. As

the encrypted file header contains the G_EC_SESS_PUB__AES_SESS_AES_KEY, EC_GLOB_PUB, and

G_EC_REC_PUB__AES_EC_GLOB_PRIV, the cybercriminals can then perform the same actions as

described previously.

©2016 Check Point Software Technologies Ltd. All rights reserved.

16

Data that was received:
G_EC_REC_PUB__AES_EC_GLOB_PRIV

Private data: SRV_PRIV

Server side

Client side

GLOB_SHA_SHARED = SHA256(SRV_PRIV * EC_REC_PUB)

EC_GLOB_PRIV = AES256(GLOB_SHA_SHARED, AES_EC_GLOB_PRIV)

 EC_GLOB_SHA_PRIV = SHA256(EC_GLOB_PRIV)

Transfer EC_GLOB_SHA_PRIV to the infected machine

Data that was transferred:

EC_GLOB_SHA_PRIV

Data stored in the encrypted files:
G_EC_SESS_PUB__AES_SESS_AES_KEY, EC_GLOB_PUB

SESS_SHA_SHARED = SHA256(EC_SESS_PUB *

EC_GLOB_SHA_PRIV)

SESS_AES_KEY = AES(SESS_SHA_SHARED, AES_SESS_AES_KEY)

AES(SESS_AES_KEY, ENC_FILE_CONTENT)

Decryption process when communication with C&C succeeded

©2016 Check Point Software Technologies Ltd. All rights reserved.

17

Data that was extracted:

G_EC_REC_PUB__AES_EC_GLOB_PRIV

Private data: SRV_PRIV

Server side

Client side

GLOB_SHA_SHARED = SHA256(SRV_PRIV * EC_REC_PUB)

EC_GLOB_PRIV = AES256(GLOB_SHA_SHARED, AES_EC_GLOB_PRIV)

 EC_GLOB_SHA_PRIV = SHA256(EC_GLOB_PRIV)

Transfer EC_GLOB_SHA_PRIV to the infected machine

Data that was transferred:

EC_GLOB_SHA_PRIV

Data stored in encrypted files:

G_EC_SESS_PUB__AES_SESS_AES_KEY, EC_GLOB_PUB

SESS_SHA_SHARED = SHA256(EC_SESS_PUB *

EC_GLOB_SHA_PRIV)

SESS_AES_KEY = AES(SESS_SHA_SHARED, AES_SESS_AES_KEY)

AES(SESS_AES_KEY, ENC_FILE_CONTENT)

Decryption process when communication with C&C failed

 Ask to transfer encrypted

file or registry data
Send encrypted file or registry data

 Extract
G_EC_REC_PUB__AES_E

C_GLOB_PRIV

©2016 Check Point Software Technologies Ltd. All rights reserved.

18

SUMMARY

Based on the information we presented, it seems it is impossible to decrypt data without paying a ransom, as

we have to solve the discrete logarithm problem. As keys are generated using a self-implemented

randomization function (that still contains unpredictable data), cryptographic attacks on that function may be

successful.

INDICATORS OF COMPROMISE

Static indicators

 Presence of files with the following SHA256 checksums in the filesystem:

3e730bb707b5c9d45e10dc500f0281a50e58badbbdfa6f5038e077c4ace125d4
366d1629a83acad94ced95c4b782ec00a2cc0096598b6824421aed1859d37c1a
7097913d473590c8fc507d8b8b6eaee8cd9db77888ebb14fc193eafeac039d7a
79743fb8f3dbef7b6066ed030ac488fe63038708cd227e7f52f4411540f2d5a4
8008a7f9920f8d61f2295ab82a9a3efac0c3a1c466213fe43afe7407bdab03d7
f2a7d3bd2430d3d8b56d04d2d56a67cb57452e5bacf85ffe37433c73cee6d40d
7b709122af3222d4e533ade64ab9bef3f79c6aa97370f876af5a6b90a834c7fe

Dynamic indicators

 Communication with the following C&C servers:

http://ricardomendezabogado.com/components/com_imageshow/wstr.php
http://opravnatramvaji.cz/modules/mod_search/wstr.php
http://gianservizi.it/wp-content/uploads/wstr.php
http://ptlchemicaltrading.com/images/gallery/wstr.php
http://3m3q.org/wstr.php
http://suratjualan.com/copywriting.my/image/wstr.php
http://imagescroll.com/cgi-bin/Templates/bstr.php
http://music.mbsaeger.com/music/Glee/bstr.php
http://stacon.eu/bstr.php
http://surrogacyandadoption.com/bstr.php
http://worldisonefamily.info/zz/libraries/bstr.php
http://biocarbon.com.ec/wp-content/uploads/bstr.php

 Presence of the following mutex in the system:

8765-123rvr4

©2016 Check Point Software Technologies Ltd. All rights reserved.

19

 Importing a specific plaintext decryption key (see Appendix B):

kasdfgh283

 HTTP specific packets during the network communication (see Appendix C).

 Presence of the following registry keys:

Registry Key Subkey Value

HKEY_CURRENT_USER\Software\Micr
osoft\Windows\CurrentVersion\Ru
n

String of
length 0x0C
that consists
only of lower
letters

"C:\WINDOWS\system32\
cmd.exe /c start ""
"${PATH_TO_EXE}""

HKEY_USERS\S-1-5-
18\Software\zzzsys

ID
REG:BINARY of size 8
bytes

HKEY_CURRENT_USER\Software\zzzs
ys

ID
REG:BINARY of size 8
bytes

HKEY_USERS\S-1-5-
18\Software\zzzsys\hexlified_ID

data
REG:BINARY of size
0x100 bytes

HKEY_CURRENT_USER\Software\zzzs
ys\hexlified_ID

data
REG:BINARY of size
0x100 bytes

 Presence of the following files in the system:

CSIDL_MYDOCUMENTS\recover_file_${random_0x09_lower}.txt

${DESKTOP}\RECOVERY.TXT

${DESKTOP}\RECOVERY.HTM

${DESKTOP}\RECOVERY.png

*_RECoVERY_+${random_0x05_lower}.txt

*_RECoVERY_+${random_0x05_lower}.html

*_RECoVERY_+${random_0x05_lower}.png

©2016 Check Point Software Technologies Ltd. All rights reserved.

20

APPENDIX A: AES ENCRYPTION ROUTINE

from Crypto.Cipher import AES

def aes_encrypt(sc, iv, pt, fp=True):
 bs = AES.block_size
 cipher = AES.new(sc, AES.MODE_CBC, iv)
 if len(pt) % bs:
 pad_len = bs - (len(pt) % bs)
 pt += chr(pad_len) * pad_len
 elif fp:
 pt += chr(bs) * bs
 return cipher.encrypt(pt)

APPENDIX B: DISK ENCRYPTION PREVENTION BY IMPORTED CRYPTOGRAPHIC KEY

TeslaCrypt uses the following key to decrypt internal data:

kasdfgh283

This key is imported with the WinAPI function:

BOOL WINAPI CryptImportKey(
 In HCRYPTPROV hProv,
 In BYTE *pbData,
 In DWORD dwDataLen,
 In HCRYPTKEY hPubKey,
 In DWORD dwFlags,
 Out HCRYPTKEY *phKey
);

The ransomware uses the following parameters (important ones are colored in red):

CryptImportKey(
 AnyCryptoProv,
 PublicKey,
 0x4c,
 0,
 0,
 AnyAddr
);

©2016 Check Point Software Technologies Ltd. All rights reserved.

21

PublicKey represents the following PublicKeyBlob structure:

typedef struct {
 BLOBHEADER blob_hdr;
 ULONG cbPublicKey;
 BYTE PublicKey[1]
} PublicKeyBlob;

typedef struct _PUBLICKEYSTRUC {
 BYTE bType;
 BYTE bVersion;
 WORD reserved;
 ALG_ID aiKeyAlg;
} BLOBHEADER, PUBLICKEYSTRUC;

When importing the following configuration of PublicKey:

As the same parameters are passed to the CryptImportKey, the following steps can be performed to detect

TeslaCrypt processes:

1. Intercept the CryptImportKey call and check if dwDataLen, hPubKey, dwFlags contain the values

specified above. If so, go to the next step. Otherwise, continue function normal execution.

2. Check if the pbData structure contains the data presented above. If the data is the same, we can

assume that the calling process is TeslaCrypt and break its execution.

APPENDIX C: DISK ENCRYPTION PREVENTION BY NETWORK COMMUNICATION
SIGNATURES

When communicating with the C&C servers, the ransomware encrypts the sent data using an AES-CBC-128

algorithm. The following AES-related data is used:

IV = '\xFF\xFF\xAA\xAA\x00\x00\xBE\xEF\xDE\xAD\x00\x00\xBE\xFF\xFF\xFF'
key = SHA256('0324532423723948572379453249857')

The encrypted data is hexlified and used as a value for the data key:

http_body = 'data=%s' % hexlify(data_encrypted)

©2016 Check Point Software Technologies Ltd. All rights reserved.

22

To detect the presence of the TeslaCrypt ransomware, perform the following operations with the HTTP

packet:

1. Check if User-Agent equals:

UserAgent: Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; Touch;
rv:11.0) like Gecko

If so, go to the next step.

2. The code that is responsible for checking if the HTTP packet is likely sent by TeslaCrypt is presented

below:

from binascii import unhexlify
from Crypto.Cipher import AES
from hashlib import sha256
from re import compile

def aes_decrypt(sc, iv, ct):
 cipher = AES.new(sc, AES.MODE_CBC, iv)
 return cipher.decrypt(ct)

def inet_http_body_decrypt(http_body):
 IV =
'\xFF\xFF\xAA\xAA\x00\x00\xBE\xEF\xDE\xAD\x00\x00\xBE\xFF\xFF\xFF'
 key = sha256('0324532423723948572379453249857').digest()

 http_body_data = None
 http_body_delim = 'data='
 if not http_body.startswith(http_body_delim):
 return None

 http_body_data = http_body[len(http_body_delim):]
 try:
 http_body_data = unhexlify(http_body_data)
 except Exception:
 return None

 try:
 http_body_dec = aes_decrypt(key, IV, http_body_data)
 except Exception:
 return None

 pb = ord(http_body_dec[-1])
 http_body_dec = http_body_dec[:-pb]

©2016 Check Point Software Technologies Ltd. All rights reserved.

23

 if ord(http_body_dec[-1]):
 return None

 return http_body_dec[:-1]

def inet_http_is_tesla(http):
 tc_ua = 'UserAgent: Mozilla/5.0 (Windows NT 6.3; WOW64;
Trident/7.0; Touch; rv:11.0) like Gecko'
 # Just for PoC
 tc_body =
compile('^Sub=.*&dh=.*&addr=.*&size=.*&version=.*&OS=.*&ID=.*&inst_
id=.*$')

 if http['User-Agent'] != tc_ua:
 return False

 http_body_dec = inet_http_body_decrypt(http['body'])
 if not http_body_dec:
 return False

 print '[+] Decrypted HTTP BODY: %s' % http_body_dec

 return tc_body.match(http_body_dec) is not None

If such a HTTP packet was caught, we can assume that it was sent by a TeslaCrypt process. Find

this process and break its execution.

©2016 Check Point Software Technologies Ltd. All rights reserved.

24

APPENDIX D: RANSOM MESSAGE IMAGE

©2016 Check Point Software Technologies Ltd. All rights reserved.

25

APPENDIX E: RANSOM MESSAGE WEB PAGE

©2016 Check Point Software Technologies Ltd. All rights reserved.

26

APPENDIX F: RANSOM MESSAGE TEXT

NOT YOUR LANGUAGE? USE https://translate.google.com

What happened to your files ?
All of your files were protected by a strong encryption with RSA4096
More information about the encryption keys using RSA4096 can be found here:
http://en.wikipedia.org/wiki/RSA_(cryptosystem)

How did this happen ?
!!! Specially for your PC was generated personal RSA4096 KEY, both public and
private.
!!! ALL YOUR FILES were encrypted with the public key, which has been transferred
to your computer via the Internet.
!!! Decrypting of your files is only possible with the help of the private key and
decrypt program , which is on our Secret Server

What do I do ?
So, there are two ways you can choose: wait for a miracle and get your price
doubled, or start obtaining BITCOIN NOW! , and restore your data easy way.
If You have really valuable data, you better not waste your time, because there is
no other way to get your files, except make a payment.

For more specific instructions, please visit your personal home page, there are a
few different addresses pointing to your page below:
1. http://pts764gt354fder34fsqw45gdfsavadfgsfg.kraskula.com/E406831E97DB790
2. http://sondr5344ygfweyjbfkw4fhsefv.heliofetch.at/E406831E97DB790
3. http://uiredn4njfsa4234bafb32ygjdawfvs.frascuft.com/E406831E97DB790
If for some reasons the addresses are not available, follow these steps:
1. Download and install tor-browser:
http://www.torproject.org/projects/torbrowser.html.en
2. After a successful installation, run the browser
3. Type in the address bar: xlowfznrg4wf7dli.onion/E406831E97DB790
4. Follow the instructions on the site.

---------------- IMPORTANT INFORMATION------------------------
--* Your personal pages:
http://pts764gt354fder34fsqw45gdfsavadfgsfg.kraskula.com/E406831E97DB790
http://sondr5344ygfweyjbfkw4fhsefv.heliofetch.at/E406831E97DB790
http://uiredn4njfsa4234bafb32ygjdawfvs.frascuft.com/E406831E97DB790
--* Your personal page Tor-Browser: xlowfznrg4wf7dli.ONION/E406831E97DB790

©2016 Check Point Software Technologies Ltd. All rights reserved.

27

APPENDIX G: FILE EXTENSIONS TO ENCRYPT

